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Abstract 
 

Fungal laccases have gained significance in diverse industrial, biotechnological and environmental applications. Wood degradi ng White Rot Fungi (WRF) of the 
phylum Basidiomycota are an important source of laccase. Optimization of culture conditions for solid state fermentation is reported to enhance laccase production. 
In the present study, optimization of the physical and biochemical factors was carried out using one factor–at–time (OFAT) approach to maximize laccase 
production by Ganoderma gibbosum collected from nearby sub-tropical forest. Under unoptimized conditions, the fungus showed ~186 U/L laccase activity. 
Maltose/fructose, NaNO3, and Polysorbate 60 were found to be the most effective carbon source, nitrogen source, and surfactant, respectively, enhancing the 
laccase yield. With the incorporation of 10 mM ethanol and 0.5 mM CuSO4 to the growth medium, laccase yield increased approximately 4-fold and 8-fold, 
respectively. These findings may be utilized for further optimization of laccase production by G. gibbosum. 
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1. Introduction 
 

Laccases (EC 1.10.3.2) are copper-containing oxidoreductase 
produced by many fungi. They are ligninolytic enzymes, owing to 
their higher redox potential and broad substrate specificity, they are 
able to transform or degrade a wide range of phenolic and non-
phenolic compounds, as well as several recalcitrant pollutants, such 
as polycyclic aromatic hydrocarbons (PAHs), pesticides, and 
synthetic dyes (Gałązka et al., 2023), by using molecular oxygen as 
the electron acceptor (Weng et al., 2021).  
 

By virtue of their versatility, laccases are of great importance in 
various industrial, biotechnological and environmental applications, 
including pulp and paper, food processing, textiles, cosmetics, 
medicines, diagnostics, and bioremediation (Chaudhary et al., 2022; 
López-Pérez et al., 2024). 
 

Among fungi, laccases are prominently found in White Rot Fungi 
(WRF) belonging to the phylum Basidiomycota. They are wood-
degrading fungi that selectively remove lignin from woods, leaving 
aside cellulosic components (Janusz et al., 2017; Dashora et al., 
2023). In order to meet the expansive demand for laccases for various 
applications, several WRF have been explored in earlier decades for 
laccase production. It is reported that the amount of laccase produced 
varies in different species and strains, as well as on the production 
system and type of substrate used (Das et al., 2024). Additionally, 
several inducers (metal ions, alcohol, phenolics, and lignin-like 
substances) and surfactants (fatty acid derivatives) have been utilized 
for inducing high laccase production by WRF and its exogenous 
secretion in the growth medium, respectively (Chmelová et al., 2022). 
 

Commonly, Solid-State Fermentation (SSF) is employed for laccase 
production from WRF as it is economical and eco-friendly, and 
mimics the natural growth environment desirable for fungal growth 
and metabolism and allows the usage of lignocellulosic agricultural 
wastes as substrates (Singhania et al., 2009; Wang et al., 2019).  

Optimization of the fermentation conditions, both physical and 
nutritional, is another vital step for obtaining a maximum laccase 
production from a particular fungal species. Various workers have 
used a classical method, called one factor–at–time (OFAT) approach, 
which involves changing one independent factor while keeping the 
others constant, for the screening of significant factors for further 
optimization. 
 

In the present study, a WRF, namely Ganoderma gibbosum was 
explored for laccase production under SSF on wheat bran by 
screening certain physical (incubation periods, pH, temperature and 
substrate to moisture ratio) and nutritional (carbon and nitrogen 
sources) parameters, inducers (copper sulphate, ethanol, ferulic acid 
and Veratryl alcohol) and surfactants (Polysorbate-20, 40, 60, 80 and 
Triton X-100). 
 

2. Materials and methods 
 

2.1. Chemicals and raw biomass material 
 

All the chemicals were of analytical grade and purchased from Sigma-
Aldrich Pvt. Ltd. (USA), HiMedia (India), and Merck (USA). The 
wheat bran was obtained from local market. 
 

2.2. Test fungus  
 

The test fungus Ganoderma gibbosum was earlier collected from a 
nearby subtropical forest, growing on a living plant, namely, 
Callicarpa macrophylla Vahl, and identified based on morphological 
characters. It was raised in pure culture on Potato Dextrose Agar 
(PDA) and stored at 4°C for further use. Subsequently, confirmation 
of correct identification was done by sequence matching of its 629 bp 
long PCR-amplified segment (NCBI Accession number: OP257154) 
covering a region between ITS1 and 28S rDNA. 
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2.3. Qualitative Screening of test fungus for laccase 
 

Primary screening for laccase production was performed by the plate 
assay method on a PDA plate containing 0.02% guaiacol (Kiiskinen 
et al., 2004). The formation of a reddish-brown zone around the 
fungal colony was considered laccase-positive. 
 

2.4. Laccase production under un-optimized Solid-State 
Fermentation (SSF) 
 

Wheat bran was used as the substrate for SSF due to its rich content 
in growth factors, vitamins, and proteins (Bagewadi et al., 2017). SSF 
was carried out in a 250 ml flask containing 5g of wheat bran. A 
mineral salt solution (MSS) containing 0.05% (NH4)2SO4, KH2PO4, 
and MgSO4 was prepared, and the pH was adjusted to 5.0 with 1 N 
HCl or 1M NaOH (Sharma et al., 2005). Then, 15 ml of MSS was 
added to moisten the wheat bran (1:3 substrate to moisture ratio) in 
each flask and autoclaved. The substrate was then inoculated with 4 
mycelial discs (each 10 mm diameter), taken from a 10-day-old pure 
culture of the test fungus. 
 

2.5. Extraction of enzyme  
 

The enzyme produced in SSF was extracted by solid-liquid extraction 
using Citrate phosphate buffer (100 mM, pH 5.0) with a 1:10 ratio 
(w/v), followed by vortexing the mixture at 150 rpm for 45 minutes at 
25 °C. The solids were separated by filtration using muslin cloth 
followed by centrifugation at 10,000 rpm for 12 min. at 4 °C. The 
supernatant obtained was taken as the enzyme source and stored at 4 
°C for enzyme assay. 
 

2.6. Laccase assay 
 

Laccase activity was assessed by preparing a 2 ml reaction mixture 
comprising 1.8 ml of 10 mM guaiacol in 100 mM citrate-phosphate 
buffer (pH 5.0) and 0.2 ml of the crude enzyme. The mixture was then 
incubated at room temperature for 20 minutes, and subsequently, 
absorbance was measured at 470 nm using a UV–Visible 
spectrophotometer (Eppendorf). Laccase activity was quantified as 
one unit (U/L), defined as the enzyme concentration needed to 
oxidize 1.0 μM of substrate per minute (Baltierra-Trejo et al., 2015). 
 

𝑈

𝐿
=  

∆𝐴  𝑉𝑡  𝐷𝑓  106

𝜀  𝑡  𝑑  𝑉𝑠

 

 
Here, ∆A  = absorbance, Vt = Total volume of the reaction (ml)  Df = 
Dilution factor,  106 = correction factor (μmoL mol−1), ε = Molar 
extinction coefficient (26,600 M-1 cm-1)  
Vs = Sample volume (ml), d = Optical path (1 cm), t = Reaction time 
(min.) 
 

2.7. Optimization of physical parameters  
 

2.7.1. Incubation period  
The effect of the incubation period on laccase production was studied 
by incubating the culture flasks for 2–22 days and quantifying laccase 
activity at two-day intervals. 
 

2.7.2. pH of the medium 
 

The pH of MSS was adjusted between 3 and 7 using 1N HCl or 1N 
NaOH, and the laccase activity of the test fungus was measured at the 
end of the optimized incubation period. 
 

2.7.3. Temperature of the medium 
 

To determine the optimal temperature for maximum laccase 
production by the test fungus, fermentation was conducted with the 
optimized pH at different incubation temperatures ranging between 
20 and 35 °C. Laccase activity was measured at the end of the 
optimized incubation period. 
 

2.7.4. Substrate Moisture Ratio  
 

The effect of substrate moisture level on laccase production was 
studied by varying the substrate-to-moisture ratio in the range of 1:2 
to 1:6. Fermentation was carried out at the optimized pH and 
incubation temperature. Laccase activity was measured at the end of 
the optimized incubation period. 
 
 

2.7.5. Optimization of biochemical parameters  
 

All the experiments mentioned here were conducted at the optimized 
levels of the above-mentioned physical factors. Laccase activity was 
measured at the end of the optimized incubation period. 
The effects of various carbon, nitrogen, surfactants, and inducers on 
laccase production were separately evaluated at different 
concentrations (Table 1). 
 
Table 1. List of the tested nutritional and biochemical factors and their 
concentration 

Factors with applied Concentration 
 
Carbon Sources (Glucose, Sucrose, Fructose, Mannitol, Glycerol and Maltose) 
: 0.05 – 2.50 (%, w/w) 
 

Nitrogen Source (NH4)2SO4,  NaNO3,  KNO3,  Peptone, Urea, Soyabean 
Meal): 0.05 – 2.50 (%, w/w) 

Surfactants (Poly-20, Poly- 40, Poly- 60, Poly- 80, Triton X-100): 0.05 – 
2.50 (%, v/v) 

Ethanol: 0.2 – 20.0 mM 

Ferulic Acid: 0.01–2.0 mM 

Veratryl Alcohol: 0.5–5.0 % 

Copper Sulphate : 0.05–5.0 mM 

 
2.8. Statistical Analysis 
 

All the experiments were performed in triplicate. One-way and two-
way Analysis of Variance (ANOVA) was performed using IBM SPSS 
software (trial version), followed by multiple comparisons between 
groups using Fisher's LSD. OriginPro (trial version) was used for 
creating graphs. 
 

3. Results 
 

3.1. Identification of fungal isolate 
 

The ITS region analysis was conducted using the BLAST tool on 
NCBI, revealing a 99% identity match to Ganoderma gibbosum. 
Phylogenetic analysis indicated close similarity to other G. gibbosum 
strains, confirming the identity of fungal isolate WRJ01. 
The identification of G. gibbosum was carried out using ITS 
sequences and the phylogenetic tree was constructed with Pleurotus 
ostreatus, used as an outgroup (Figure 1). The obtained sequence was 
submitted to NCBI GenBank, Accession number: OP257154. 
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Figure 1. Phylogenetic tree of G. gibbosum 
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3.2. Screening for laccase production 
 

G. gibbosum was confirmed as laccase positive fungus due to 
formation of a reddish-brown ring after oxidation of guaiacol 
indicator around its colony in PDA plates (Figure 2). 
 

3.3. Optimization of physical parameters 
 

3.3.1. Incubation period: Laccase production by G. gibbosum 
increased gradually up to day 10, peaked thereafter reaching to its 
maximum on day 14–16th , (183–186 U/L), and declined sharply 
afterwards (Figure 3). 
 

3.3.2. Moisture ratio: Among the five substrate to moisture ratio 
tested (1:2–1:6), 1:3 ratio provided the maximum laccase activity 
(~196 U/L) closely followed 1:4 ratio (~181 U/L). At both the 
substrate moisture ratios, the laccase production was many-fold 
higher in comparison to 1:2 ratio (~35 U/L) (Figure 4). 

 

3.3.3. Incubation temperature: Laccase production jumped almost 
four fold when incubated at 25°C (~192 U/L) in comparison to 20°C 
(~46 U/L). On further increasing the incubation temperature to 
30°C, its production showed almost 25% decline (~141 U/L) (Figure 
5). 
 

3.3.4. pH of growth medium:  Laccase production increased sharply 
from pH 3 to pH 4 and again at pH 5 giving a maximum yield of 192 
U/L. The production declined sharply while further increasing the pH 
of the growth medium (Figure 6). 
 
3.4. Optimization of biochemical parameters 
 

3.4.1. Carbon sources: Analysis of the results of various carbon 
sources (Mannitol, Glycerol, Glucose, Sucrose, Fructose, and 
Maltose) applied at different concentrations showed that on laccase 
activity is significantly influenced by the type of carbon source as well 
their concentration (Figure 7). G. gibbosum showed the highest 
laccase activity at 0.5% maltose or fructose (~330 U/L) followed 
sucrose under the given culture conditions. Further increase in 
concentration of these carbon sources showed a pronounced negative 
effect on laccase activity. Maltose was the the best source even at 
0.05% (~290 U/L), followed by glucose (~257 U/L), fructose (~236 
U/L) and sucrose (~215 U/L). Addition of Glycerol did not increase 
laccase activity at any of the applied concentration whereas mannitol 
appeared inhibitory. 
3.4.2. Nitrogen sources: Substrate supplementation with additional 
nitrogen significantly influenced laccase production. Except KNO3, 
other five nitrogen sources (organic sources: Urea, Soybean meal, 
peptone; inorganic sources (NH4)2SO4, NaNO3) promoted laccase 
activity, and with a further increase in their dose, the activity was 
generally higher (Figure 8).  
 

The highest laccase activity was at 1.5% concentration of NaNO3 (~ 
655 U/L) followed by peptone (~ 418 U/L), (NH4)2SO4 (~ 319 U/L) 
and soyabean meal (~ 283 U/L). Even at a lower concentration of 
0.5%, NaNO3 was superior in performance than others. On the other 
hand, the beneficial effect of urea gradually increased with 
concentration, and at 2.5% concentration its performance reaching to 
a maximum (~ 576U/L). 
 

3.4.3. Surfactants: Effects of five different surfactants (Polysorbate- 
20, 40, 60, 80, and Triton X-100) were investigated on laccase 
activity under SSF condition (Figure 9). Among them, Polysorbate 60 
at 1.5% concentration provided the highest laccase activity (~391 
U/L). It was comparatively better than the other surfactants even at 
0.5% concentration. Other surfactants exhibited a peak in laccase 
activity only at 0.05% concentration, and among them, the best 
performance was shown by Polysorbate 80 (~265 U/L). 
 

3.4.4. Inducers: Among different inducers (Copper sulphate, Ethyl 
alcohol, Ferulic acid, and Veratryl alcohol) evaluated for their effect 
on laccase production, copper sulphate appeared to be the best 
providing a highest laccase activity of 1485 U/L at 0.5 mM (Figure 
10a). Ethanol at 10mM provided 640 U/L laccase activity which 
remained statistically the same at 20mM (Figure 10b). For ferulic acid 
and veratryl alcohol, the optimal concentration for a maximum 
laccase activity was 0.01 mM (284 U/L) and 2.5mM (366 U/L) 
respectively, beyond which the activity declined sharply (Figure 10c, 
d). 

4. Discussion 
 

Laccase production by white rot fungi is affected by various physical 
and nutritional factors of the growth media for the metabolism and 
growth of the fungal mycelia (Rivera-Hoyos et al., 2013). In the 
present study, G. gibbosum showed approximately 190 U/L laccase 
activity on the 16th day after optimization of solid-state fermentation 
conditions on wheat through OFAT, with pH 5.0, temperature 25°C, 
and substrate moisture ratio of 1:3.  
 

Under unoptimized conditions, laccase activity gradually increased 
from the 2nd day onwards, reaching its maximum level on days 14–16, 
and declining sharply afterward. The incubation period has been 
recognized to play a very important role in fungal growth, 
reproduction, and metabolism, and varies among fungal species, as 
well as according to the production conditions (Abd El Monssef et al., 
2016; Hasan et al., 2023). Several researchers have reported 
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Figure 2. Laccase activity by G. gibbosum on guaiacol supplemented PDA 
 

Figure 3. Effect of incubation time on laccase production (mean ± SD). SSF 
conditions: incubation temperature - 25°C, Moisture ratio - 1:3, pH- 5.0. 
 

Figure 4. Effect of Moisture ratio on laccase production (mean ± SD). SSF 
conditions: incubation temperature - 25°C, pH- 5.0, Day-16. 
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variations in time ranging from 5 to 17 days for the highest laccase 
activity (Umar and Ahmed, 2022; Han et al., 2022; Boran and 
Yesilada, 2022; Ibarra-Islas et al., 2023). A decline in laccase activity 
afterward can be attributed to the imposed physiological stresses on 
fungi due to the depletion of nutrients in the medium, leading to the 
inactivation of the secretory machinery of the enzymes (Chhaya and 
Modi, 2013; Sun et al., 2017). 
 

A wide variation in substrate moisture ratio under SSF has been 
reported among fungal species. Optimum moisture content is 
essential as it facilitates substrate swelling, nutrient solubility, gas 
exchange, substrate utilization, microbial metabolism and enhanced 
enzyme production (Xin and Geng 2011; Dutt and Kumar, 2014). In 
this study, a substrate moisture ratio of 1:3 and 1:4 were far superior 
to any other ratios for laccase activity.  Patel and Gupte. (2016) and 
Bhoyar et al. (2024) found similar results for Tricholoma giganteum 
AGHP and Lentinus tigrinus SSB_W2 respectively grown on wheat 
bran. Sharma et al. (2015) reported that maximum laccase activity by 
Ganoderma sp. rckk-02 was found on wheat bran moistened with 
mineral salt solution in substrate to moisture ratio of 1:2.5 
supplemented with 4.5 mM copper and 2.0 % tryptophan. On the 
other hand, Ravenkar et al. (2006) and Boran and Yesilada (2022) 
have reported 1:0.7 as optimal substrate moisture ratio for wheat 
bran for high laccase production by Ganoderma spp. 
 

Temperature serves as the primary determinant of both laccase 
activity and fungal growth, particularly during industrial scale-up 
processes. It is reported that the optimal temperature for laccase 
production varies significantly among fungi (Naz et al., 2022). We 
found the highest laccase activity by G. gibbosum at 25°C, with a 
sharp decline observed with further increases in temperature. This 
finding is in agreement with many other reports suggesting 25–30°C 
as the optimal temperature range for WRF (Thurston, 1994; Elsayed 
et al., 2012; Ergun and Urek, 2017; Patel et al., 2019). Umar and 
Ahmed (2022) have reported maximum laccase production (855 
U/L) by G. leucocontextum at 40°C. Therefore, it appears that the 
optimum temperature for laccase production also varies in WRF. 
 

The initial pH of the medium is also recognized as one of the most 
influential factors in fungal growth, enzyme production, and the 
transport of various components across the cell membrane. Further, 
a change in the pH of the growth medium may affect metabolic 
activity as well as enzyme activity (Kapoor et al., 2007; Adak et al., 
2016). Usually, higher growth and laccase production are observed in 
acidic pH conditions (Thurston, 1994; Hamed et al., 2024), and in 
many studies, the initial pH of the medium between 4 and 6 has been 
reported as optimum (Nandal et al., 2013; Ding et al., 2014; Ghosh 
and Ghosh, 2017; Vantamuri et al., 2019). We found pH 5.0 to be 
optimum for laccase production by G. gibbosum. A similar result has 
been reported by Shrestha et al. (2016) for G. lucidum–CDBT1. 
 

The carbon source in the medium plays a crucial role by promoting 
mycelial growth and inducing the transcription of the laccase gene 
(Teerapatsakul et al., 2007; Adamian et al., 2021). However, the effect 
can vary depending on the specific fungal strain. In the present study, 
out of the six carbon sources supplemented individually to the 
production medium, only maltose, fructose and sucrose enhanced 
laccase activity in G. gibbosum, whereas glucose, mannitol and 
glycerol appeared inhibitory. The former three carbon sources 
showed their best beneficial effect at 0.5% concentration, but their 
higher concentrations suppressed laccase activity. Gutiérrez-Antón et 
al. (2023) have also reported fructose and maltose as a suitable 
carbon source for enhanced laccase production by Thielavia 
terrestris Co3Bag1. On the other hand, Sharma and Murty (2021) 
reported fructose at 1% as the best carbon source compared to 
maltose, dextrose, sucrose and xylose for Pleurotus sajor-caju, 
providing the maximum laccase activity under SSF. Suppressed 
laccase production at higher concentrations of additional carbon has 
been reported for many fungal strains (Lee et al., 2004; Sharma and 
Murty, 2021).  
 

Nitrogen sources also play a crucial role in fungal physiology and 
metabolism, impacting enzyme production (Reddy and Kanwal, 
2022), however, nitrogen source may vary depending on the fungal 
species (Jaramillo et al. 2017). Out of the six nitrogen sources, except 
KNO3, the other five sources used in the present study promoted 
laccase activity when increasing their dose up to a certain level. 

Among these sources, NaNO3 at a 1.5% concentration provided much 
higher laccase activity compared to the others. Gutiérrez-Antón et al. 
(2023) found 3.18-fold enhancement in the laccase activity by 
Thielavia terrestris Co3Bag1.  
 

Production of laccase is significantly influenced by the presence of 
surfactants in the growth medium because they increase cell 
membrane permeability, thereby allowing a rapid release of enzymes. 
Additionally, they increase the solubility of substrate molecules 
present in the lignocellulosic structure, enhance enzyme stability, and 
reduce enzyme dosage during hydrolysis (Muñoz et al., 2022). We 
recorded maximum laccase activity in media supplemented with 1.5% 
Polysorbate 60. However, the specific effect of different surfactants 
on laccase production can vary depending on various factors, 
including the fungal strain, fermentation conditions, etc. (Singh and 
Singh, 2017; Geethanjali et al., 2020). 
 

Various types of inducers (metal ions, phenolic and aromatic 
compounds) have been utilized for obtaining enhanced laccase 
production from fungi. Copper ion act as a cofactor, transcription 
activator, and promotes laccase synthesis and maturation (Sharestha 
et al., 2016; Wang et al., 2019; Sharghi et al., 2024). Phenolic and 
aromatic compounds induce secondary metabolism in fungi and to 
enhance laccase production (Tavares et al., 2005). We used four 
different inducers, viz. (copper sulphate, ethanol, veratryl alcohol and 
ferulic acid), and among them copper sulphate at 0.5 mM was the 
most effective in enhancing laccase activity by 8-fold in G. gibbosum. 
Next in effectiveness were ethanol, veratryl alcohol and ferulic acid 
providing 3.4-fold, 1.9-fold, and 1.5-fold more laccase activity 
respectively. 
 

Addition of copper in low concentrations to the culture medium in 
reported to enhance laccase production in several cases and its 
optimum concentrations may vary depending on the fungal species 
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Figure 5. Effect of incubation temperature on laccase production (mean ± SD). 
SSF conditions: pH- 5.0, Moisture ratio - 1:3, Day-16. 
 

Figure 6. Effect of initial medium pH on laccase production (mean ± SD). SSF 
conditions: incubation temperature - 25°C, Moisture ratio - 1:3, Day-16. 
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and even specific strains.  (Palmeiri et al., 2000; Wang et al., 2019; 
Durán-Sequeda et al., 2022).  Manavalan et al. (2013) and Fonseca et 
al. (2010) have also reported 0.4 mM and 0.5 mM copper sulphate as 
optimum for stimulating laccase production in G. lucidum and G. 
applanatum respectively. Similar findings for ethanol, veratryl 
alcohol and ferulic acid as effective inducers have been reported for  
various WRF (Arora and Gill, 2001; Lomascolo et al., 2003; 
Elisashvili et al. 2010; Kocyigit et al., 2012; Sharma et al. 2014).  
These inducers activate oxidative stress within the fungal cells which 
may indirectly induce laccase production (Lee et al., 1999; Karp et al., 
2012; Chhaya and Gupte, 2013; Swatek and Staszczak, 2020). 
 

5. Conclusion 
 

Fungal laccases are excellent biocatalysts, with a great demand for 
various industrial, biotechnological, and environmental applications. 
This study reports Ganoderma gibbosum as a potential laccase-
producing White rot fungus. Optimization of certain physical and 
nutritional factors under Solid-State Fermentation enhanced laccase 
production, which further increased manyfold in the presence of 
inducers and surfactants. Optimization of fermentation conditions 
through statistical designs for ideal levels of various factors, and their 
interactions, may further enhance laccase yield. 
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